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Field-theoretic approximations for normal diffusion in random velocity fields
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The motion of a classical Brownian particle entrained in a fluid with random, time-independent
velocity fields is discussed. Two approaches to calculating the disorder-averaged Green’s function
are presented, both based upon a functional-integral formulation. A renormalization group (RG)
approach proves to be less satisfactory than does a self-consistent perturbation theory approach,
which reproduces the well-known direct interaction approximation. An explicit comparison of the
results with Monte Carlo data is made in two dimensions. The relationship between the present
results and the case of diffusion in a solid, where RG provides a superior answer, is discussed in

physical terms.

PACS number(s): 51.10.+y, 66.30.Jt, 05.40.4j, 47.55.Mh

I. INTRODUCTION

This paper discusses three approximate approaches
for a quantitative calculation of the disorder-averaged
Green’s function of a classical Brownian particle en-
trained in the random, time-independent streamlines of
a fluid. The three approaches are perturbation theory,
self-consistent perturbation theory (SCPT), and renor-
malization group (RG) theory. Only incompressible flu-
ids are considered. The velocity field is assumed to obey
Gaussian statistics. Two example cases where the veloc-
ity field has a finite correlation length are examined in de-
tail, in two dimensions. The presence of the streamlines,
in general, tends to advect the Brownian particle, thereby
increasing the effective diffusion coefficient. Such an en-
hanced mobility is clearly of importance in such practical
applications as flow in packed beds [1-3], porous media
[4-12], and stirred tank reactors [13].

These approximate approaches each have a long and
studied history in physics and in fluids mechanics, in par-
ticular. The self-consistent perturbation theory will be
shown to lead to the well-known direct interaction ap-
proximation (DIA) [14]. Various diagrammatic resum-
mation schemes have also lead to this approximation
[15-18]. Field theoretical techniques for studying mo-
tion in disordered media were first introduced by Mar-
tin, Siggia, and Rose [19] and Dominicis and Peliti [20].
Results from this approach were reviewed by Bouchaud
and Georges [21]. A physically motivated RG approach
to turbulence was introduced by Rose [22]. The RG ap-
proach to turbulence has been strongly championed by
Yakhot and co-workers [23,24]. Detailed evaluations of
the RG approach to turbulence were carried out for an
exactly solvable model by Avellaneda and Majda [25,26].

These studies have shown that the DIA is very satisfac-
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tory in the normal diffusion regime, accurately predict-
ing quantitative Green’s functions. Furthermore, RG has
been very helpful in the anomalous diffusion regime, ac-
curately predicting the scaling behavior of Green’s func-
tions. Complicating the picture, however, is the success
of the DIA in predicting scaling behavior in the anoma-
lous regime [15,27]. Even more intriguing is the success
of the RG approach for the normal diffusion coefficient
of a Brownian particle in a disordered solid [28,29]. The
equivalent of the DIA is a complete failure in this case,
incorrectly predicting a localization transition.

It is, therefore, interesting to derive the result of a
RG treatment for normal diffusion in a random fluid and
compare the results, along with those of the DIA, to those
for diffusion in a random solid. Section II describes the
models of the velocity field in which the Brownian parti-
cle diffuses and discusses a simple perturbation theory for
the effective diffusion coefficient. The general results are
illustrated by reference to these specific forms of disor-
der. Section III reviews the field-theoretic formulation of
the classical diffusion problem. A field-theoretic deriva-
tion of the DIA by self-consistent perturbation theory is
presented in Sec. IV. Section V summarizes the results
of a RG treatment of the problem. The results of “ex-
act” Monte Carlo calculations are presented in Sec. VI.
I find the “expected” result that the SCPT works well
and the RG works poorly in the normal diffusion regime.
As noted above, however, it is not completely obvious
that this should be the expected result, and a physical
discussion of these results is presented in Sec. VII.

II. RANDOM FLUID MODEL

The Brownian particle is assumed to diffuse in a fluid
with a static, random velocity field. The probability dis-
tribution of such a particle obeys a diffusion equation.
The Green’s function, Gv (x,t), for diffusion in a partic-
ular instance of the velocity field is given by the solution
of the standard diffusion equation. With Dy as the free-
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space diffusion coefficient, the diffusion equation is

IGv (x,t)

= DoV3G t
at 0 V(xa )

— 7V - [Gv(x,1)V(x)],
(1)

where V(x) is the time-independent velocity field in the
fluid. The velocity of the particle due to the fluid is given
by 70V (x), where 7o is an inverse friction coefficient, and
this is the reason for the second term on the right-hand
side of Eq. (1). The Laplace transform of the Green’s

function, Gv (x, s), satisfies

= DoV2Gv(x,5) — 10V - [Gv(x,5)V(x)]
+4(x) . (2)

The experimentally relevant Green’s function is the av-
erage of Gv(x,t) over the statistics of the velocity field.
That is, Gv(x,t) must be averaged over the ensemble to
give G(x,t). The fluid is assumed to have no net flow,
ie., (V) =0.

The fluid is also assumed to be incompressible. The
continuity equation then implies that

sGv(x,s)

V.V=0. (3)

Thus, the velocity can be expressed in terms of a vector
potential (x) as

V(x) =V x $(x) . (4)

The vector potential is further assumed to obey corre-
lated Gaussian statistics. This, in turn, implies that the
velocity field obeys Gaussian statistics. The correlation
function can be obtained in Fourier space as

Vi(=k)) = 7Nk x $(k)i[k x P(~k)];)
AT .
= Q70 (k0 — kik;) (¥ (—K)9(k))
= (k?8i5 — kik;) X(K) , (5)
where x(k) is the diagonal element of the correlation
matrix of the vector potential and 2 denotes the effec-

tively infinite volume of the system. For notational con-
venience, the correlation matrix is defined as

QT Vi)V (k) = Xyv,, (k) - (6)

Two archetypical forms of the correlation function of
J

Q" H(V;(k)

Gwa=——hm/owmw%wwak L //D

The effective action is given by
L[3,9] = z [ #

(] Z/ (2m)
2 521 Jakaksks

x6(k; + ko + ks + k4)k2 Xvv (ki + ka|)ks
X Pa(k1)Pq (k) pp(ks)Pp(ka) (12)

k)$o (K)[s + Dok?]
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the vector potential are examined. One exhibits expo-
nential decay in real space

K,4

- N 7
X(k) k2(52+k2) ’ ( )
and the other, Gaussian decay
. _ k2 /x?
X(k) = e ¥/ (8)

An inverse correlation length « has been introduced here,
as it will be accommodated naturally later. Numerical
prefactors have been ignored, as they can be absorbed
into 7o.

The property of interest is the effective diffusion coeffi-
cient, defined in relation to the mean square displacement
averaged over the disorder by

— 3 2
D= Jim / dx|x|2G(x, t)/2dt
= lim G~ 1(k,0)/k? . (9)
k—0

Iteration on Eq. (1) using the V = 0 free propagator,
Giree(k,s) = 1/(s + Dok?), generates a perturbation se-
ries for the inverse of the effective diffusion coefficient,

_ d—1_, 2d®-5d+3_ ,
Do/D=1- p] Pe” + ¥ Pe
Pe4 ks — (k1 . k2)2/k2
+—— X(k1)X(k2) 2 L
x(0)2 /l;;kg X (k1) x(k2) ki + k2|2
+0 (Pe®) (10)

in d dimensions. The Peclet number is given by Pe? =

v5x(0)/D3.

III. FIELD-THEORETIC REPRESENTATION
OF THE DIFFUSION EQUATION

I here present the field-theoretic approach to calculat-
ing the Green’s function. This approach is described in
some detail in Refs. [19-21]. The Green’s function of any
linear operator can formally be represented by a func-
tional integral over two conjugate fields [21]. Averaging
over the disorder present in the linear operator is easily
performed in this formalism. The result in the present
case follows very closely from the results of [28] as

‘p]eL[‘P P (11)

where the notation fk stands for the d-dimensional inte-
gral [dk/(2m)<.

In the thermodynamic limit, Eq. (11) can be written
as

(2m) 5 (k + K)G(k, 3) = —i lim (5, (K) @ (k) . (13)
—
where the pointed brackets denote the functional average
with weight exp{L[®, @]}

The action (12) in the disorder-averaged functional in-
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tegral representation of the Green’s function does not
have a harmonic form, and the Green’s function, thus,
cannot be calculated exactly. Perturbation theory on
the action (12) reproduces Eq. (10). It is clear that
D/Dy = 1 in one dimension. In higher dimensions,
the first-order term increases the effective diffusion co-
efficient. Higher-order terms moderate the increase pre-
dicted by the first-order term. I now turn to the approx-
imate treatments of these higher-order terms.

IV. SELF-CONSISTENT HARMONIC
REFERENCE SYSTEM

Some form of approximation is required to make
progress on the anharmonic action (12). This section
presents a self-consistent perturbation theory for the cor-
relation function. The approach is analogous to that
taken in [28]. The details of the derivation are, thus,
omitted. A harmonic reference system is defined by re-
quiring the first-order correction to the correlation func-
tion to vanish. This condition is sufficient to constrain
the real, radially symmetric, effective propagator to be
given by the following equation:

Gy (K, s) = (5 + Dok?) + 2 / Go(kz, 8)%(|k + kal)
ko

x [k%k3 — (k - k2)?] (14)
This self-consistent field-theoretic result is nothing more
than the “direct interaction approximation” [14]. Note
that the solution to Eq. (14) exactly satisfies the sum rule
associated with normalization, G¢(0,s) = 1/s. The in-
tegral equation also satisfies first-order perturbation the-
ory, as it must.

When diffusion occurs, the effective diffusion coeffi-
cient is given by D = limg_,0 G '(k,0)/k2. To analyze
the diffusive regime, a simpler integral equation for the
dimensionless function

f(h) = Dok2h*Go(kh,0) (15)
suffices, where h is now a dimensionless variable. The
diffusion coefficient is given by

D/Dg = lim f~Y(h) . (16)
h—0

The integral equation (14) is solved in the s — 0 limit
by a basis set approach. Asymptotic analysis shows that
f(h) = Do/D + O(h?) as h — 0 and f(h) ~ 1+ O(1/h?)
as h — oo. The basis set must be able to accommo-
date this behavior. Analytic forms that do not satisfy
these requirements, such as f(h) = 1/[co + c2h® + -],
do not always lead to accurate solutions. A very simple
rectangular basis function is adequate for this task,

f(h) = Zaiﬁ-(h) ; (17)

where
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A 1, bi_1 <h<b;
fi(h) = (18)

0, otherwise.

The parameters {b;} are distributed in 0 < b; < Aaz
by the relaticn b; = hqei2/n%. The parameters {a;}
are determined by insisting the integral equation (14) is
satisfied at h;, where h; = (b; + b;_1)/2. Equation (14),
thus, becomes a nonlinear algebraic equation for the {a;},

,YZKd n
l/a,; =14+ 52 ZBijaj . (19)
0 j=1

The basis set matrix B is given in three dimensions by

1 1 b; -
B;j = e [1 dz Aj_l dhahix(k|h; + ha|)(1 — z?) ,
(20)

where * = h; - hy/(h;h2). In two dimensions, the basis
set matrix is given by

1 ™ b; . .
Bi; = W/ d0/ dhaha%(k[h; + ha|)sin(6) . (21)
0 bi 1

The angular integral is performed analytically and the
remaining magnitude integral is performed numerically
by adaptive Gauss-Legendre integration [30]. Equation
(19) is found to be efficiently solved by iteration on the
{a;} parameters. Convergence is achieved for n = 100
and ke = 50 for the parameters examined. Figure
1 depicts the effective diffusion coefficients predicted by
Eq. (19) for the specific models of disorder defined by
Eqgs. (7) and (8) in d = 3. Figure 2 depicts the effective
diffusion coefficients predicted by Eq. (19) for the specific
model of disorder defined by Eq. (8) in d = 2.
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FIG. 1. Dimensionless diffusion coefficient as a function of
dimensionless disorder strength for the models (7) and (8)
in three dimensions. The highest curve is the renormaliza-
tion group answer, Eq. (22). The second highest curve is
the self-consistent result, Eq. (19), for model (7). The lowest
curve is the self-consistent result for model (8).
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FIG. 2. Dimensionless diffusion coefficient as a function of
dimensionless disorder strength for the model (8) in two di-
mensions. The lower curve is the self-consistent result, Eq.
(19). The higher curve is the renormalization group answer,
Eq. (22). The points are from the “exact” Monte Carlo sim-
ulation and are about two standard deviations in height.

V. RENORMALIZATION GROUP APPROACH

The renormalization group theory has been applied to
the field theoretic formulation of diffusion in random me-
dia. The review of Bouchaud and Georges details some
of the scaling predictions that have been made for the
mean square displacement, i.e., the exponent in the rela-
tion (r2(t)) ~ t2” [21]. For the case of disorder described
by Egs. (7) and (8), these renormalization group studies
indicate the long-time behavior is diffusive in two and
three dimensions, i.e., v = 1/2. The quantitative cal-
culation of the diffusion coefficient from renormalization
group techniques that follows is very similar to that in
[28]. The quantitative renormalization group treatment
of the diffusion coefficient in a random velocity field is
valid for general x(|r|) in any dimension d. The discus-
sion is limited, however, to the case where x(0) is finite.

I use the standard momentum-space renormalization
group algorithm directly in the physical dimension. A
general discussion of this approach as applied to the clas-
sical diffusion problem can be found in the review by
Bouchaud and Georges [21]. More general discussions
of the simple renormalization group procedure used here
can be found in, for example, [31]. The detailed manip-
ulations are very similar to that in [28] and are omitted.
The final result for the effective diffusion coefficient is
given by

D = Dyeld-1Pe’/d (22)

This result for the models of disorder defined by Egs. (7)
and (8) in d = 3 is plotted in Fig. 1. The result in two
dimensions for the model of disorder defined by Eq. (8)
in d = 2 is plotted in Fig. 2.

VI. MONTE CARLO CALCULATIONS

It is clear that the self-consistent and renormalization
group approaches lead to different numerical results for
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the diffusion coefficient. In order to gain some insight into
which approach is more accurate, Monte Carlo simulation
is used to generate “exact” results. A random walk can
be constructed that leads to the density profile predicted
by Eq. (1). A particularly simple one is defined on a
square lattice by

T(x,Ar) = [1+4 yoAr - V(x)/2]/2d , (23)

where T'(x,Ar) is the transition probability for a hop
from x to x + Ar on the lattice. The random walk is,
thus, locally biased in the direction of the velocity field.
In the limit of a vanishing lattice spacing Ar, the random
walk defined in this way leads to a density profile that
satisfies Eq. (1). Other Monte Carlo schemes are possible
[32,33].

To implement this scheme, the random velocity field
must be generated on a lattice. Gaussian random fields
can be very efficiently generated with the use of fast
Fourier transform techniques [34], since Gaussian fields
are decoupled in Fourier space. The vector potential is
generated by this procedure in real space and the veloc-
ity field is derived from it. These calculations require
a rather large lattice for convergence, and so I perform
calculations in two dimensions only. In this case, Eq. (4)
reduces to

V(x) = (89(x)/8y, —0¢(x)/0z) . (24)

The vector potential, in two dimensions, reduces to a
single component.

This Monte Carlo scheme leads to numerical values of
the diffusion coeflicient that would be exact if enough
statistics were collected. In particular, it is important to
sample many correlation volumes of the potential for an
accurate estimate of the effect of the disorder. Periodic
boundary conditions are used, but the random walker
should not sample more than the linear size of the lat-
tice in one simulation if random statistics are to be pre-
served. The infinite time limit in Eq. (9) that is used to
define the diffusion coeflicient corresponds to sampling
infinitely many correlation volumes. As the strength of
disorder is increased, the lattice spacing Ar must be de-
creased. This then implies that an increased number of
hops is required to escape from a correlation volume. The
length of the random walk required for convergence actu-
ally grows quadratically with the disorder strength. This
convergence criterion limits the current Monte Carlo cal-
culations to moderate-disorder strengths. As an example,
the random walk for v2x(0)/DZ = 1.0 was 2.5 x 10° hops
long. The lattice was 4096 x 4096, and the lattice spacing
was Arxk = 0.01. Diffusion coefficients are calculated by
extrapolation from finite random walks in the parameter
1/t — 0.

The converged Monte Carlo results for the diffusion co-
efficient are presented in Fig. 2. The agreement between
the DIA and the Monte Carlo data is very good, as sug-
gested by calculations of Kraichnan [32] and Drummond
et al. [33] for the case Dy = 0. These results are an aver-
age over 10000 different starting positions for the random
walker. This averaging removes the need to sample over
different instances of the disorder. The uncertainty in
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the data is about the size of the symbols. In particular,
the largest standard deviations are one half the height of
the symbols.

VII. DISCUSSION AND CONCLUSIONS

It is clear that the self-consistent approach is satisfac-
tory for small Pe. By construction it must satisfy pertur-
bation theory to first order. The renormalization group
result is also satisfactory for weak disorder, by construc-
tion. The effective diffusion coefficient predicted by the
renormalization group approach depends only on the di-
mensionless parameter Pe. For the specific models of dis-
order examined, the self-consistent perturbation theory
result is almost independent of the model (see Fig. 1).
That is, Pe is a good dimensionless parameter to corre-
late the results. From Eq. (10), one sees that the diffusion
coefficient depends on the model used for the vector po-
tential of the fluid. The self-consistent approach predicts
this dependence to be weak.

The perturbation series (10) predicts that the effective
diffusion coefficient increases with increasing strength of
disorder. Higher-order terms in the series diminish the
increase predicted by the first-order term. The renormal-
ization group treatment, however, predicts an enhance-
ment even greater than that predicted by the first-order
term. This prediction is in error, as shown explicitly by
Eq. (10) for weak disorder. The self-consistent approach,
on the other hand, predicts a more modest increase in
the effective diffusion coeflicient with strength of disor-
der. This prediction is in accord with the low-order per-
turbation series predictions. It is also consistent with
the Monte Carlo calculations performed for moderate-
disorder strengths. The self-consistent result, or DIA, ap-
pears accurate to even higher-disorder strengths and pre-
dicts only a modest enhancement of the effective diffusion
coefficient with increasing disorder of the velocity field.
Figure 2 suggests that the DIA may slightly over predict

the diffusion constant at higher-disorder strengths. This
discrepancy is at the limit of our Monte Carlo accuracy,
however, and may not be significant.

While it is often expected that SCPT works well in the
normal, diffusive, mean-field regime, and this is observed
in the present results, this expectation is not always met.
In particular, SCPT inappropriately localizes a particle
diffusing in a solid medium [28], and RG provides a very
accurate approximation to the particle motion [28,29].
The trajectory of a particle in a solid medium is one of
rare, random hops between locally deep regions of the po-
tential. Upon coarse graining, the motion of the particle
still appears as random hops between wells. RG naturally
accommodates this coarse-grained similarity. SCPT, on
the other hand, is particularly sensitive to the local trap-
ping of the particle. It is unable to capture the hop-
ping motion and incorrectly predicts a localization of the
particle. The trajectory of a particle in a fluid medium
is one of rough entrainment along streamlines. Coarse
graining the system blurs the streamlines. One-loop or-
der RG is unable to capture the correlations that persist
in this blurring and over predicts the effects of the ran-
domness on the Brownian particle. SCPT, on the other
hand, deals very well with the nonlocal averaging implied
by the advective transport and provides a very accurate
approximation.

In summary, while mean-field theory works well in the
normal diffusive regime in liquids, it does so for a very
special physical reason. Counterexamples exist where
mean-field theory works poorly and RG works well even
in the normal, diffusive regime.
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